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Abstract

Mimetic discretizations based on the support-operators methodology are derived for gen-
eral polygonal meshes. The second-order convergence rate is verified with numerical examples
on general polygonal, locally refined and non-matching meshes.

1 Introduction

Discrete approximations used to predict diffusion heat or matter on a mesh covering the
domain are often the determining factor for the reliability, accuracy, and efficiency of the
simulations. One of the most effective ways to derive such discrete approximations is to
preserve and mimic the underlying properties of the simulated systems. The problem becomes
more difficult when the mesh is distorted so that it can conform and adapt to the physical
domain and problem solution. One of such approaches, the mimetic finite difference technique
based on the support-operator (SO) methodology, has been applied successfully to several
applications including diffusion processes (on both conformal [13, 4, 9] and locally refined [7]
meshes), electromagnetics [3], and gas dynamics [2].

In this paper we extend a class of mimetic discrete approximations for modeling the dif-
fusion equations on general polygonal meshes. The class of polygonal meshes is very wide
and includes meshes used in many applications. For instance, adaptive meshes with hanging
nodes are among them. If we consider the hanging nodes as the additional vertices, we shall
get a conformal polygonal mesh. Another example comes from applications using nonmatch-
ing grids. We may again consider all the mesh points on the interface between nonmatching
meshes as vertices of a conformal polygonal mesh.

The SO method can be applied to various formulations of the diffusion equation. In
this paper we consider the diffusion problem formulated as the system of two first-order
equations for the mass conservation and the flux definition. We begin with considering each
mesh polygon as an independent domain and generate an independent discretization for each
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polygon. The local discretization mimics essential properties of the divergence and gradient
operators; namely, discrete analogs of these operators satisfy the discrete analog of the Gauss-
Green formula. The global discretization is achieved by imposing continuity conditions across
polygon interfaces.

Error estimates are important to quantify the accuracy of the discrete solutions and to know
when to trust them. The convergence of the SO discretization on triangular and quadrilateral
meshes has been proved in [1] by developing a connection of the mimetic discretization with
the mixed finite element (MFE) method. Unfortunately the relationship between the SO and
textbook MFE methods can not be extended even to non-orthogonal hexahedral meshes. As it
was shown in [10] the usual Piola transformed shape functions can not match uniform flow on
such meshes. On the other hand, the discretization technique presented in this paper can be
extended to general polyhedral meshes resulting in discretizations which are exact for uniform
flows.

The extension of the SO methodology to general polygonal meshes was possible after deep
analysis of recent theoretical results concerning new finite element prolongation operators in
Hg;,, on polygonal and polyhedral meshes proposed in [6]. These operators produce the finite
element functions which have constant divergence in each polygon. In the context of the
SO discretization, the assumption of constant divergence can be waived without lost in the
convergence rate (see Section 3). This enlarges the class of the SO discretizations accurate
for uniform flows and allows potentially to add new features in the discretization. The new
SO discretization results in an algebraic problem with a symmetric positive definite matrix.
Therefore, the problem can be solved with the conjugate gradient method.

Limited use of polygonal meshes is mainly restricted by a small number of accurate dis-
cretization schemes. We mention here a finite volume scheme proposed in [11]. The scheme
is exact for homogeneous linear solutions but results in a non-symmetric coefficient matrix.
Therefore, it requires the use of non-traditional iterative solvers.

The outline of the paper is as follows. In Section 2, we formulate a model elliptic boundary
value problem and describe the general framework of the SO method. In Section 3, we analyze
a new scalar product in the space of fluxes and show that the resulting numerical scheme is
exact for uniform flows. In Section 4, we describe an efficient solution technique based on the
static condensation. The computational results are given in Section 5.

2 Mimetic finite difference method

Let us consider a model elliptic boundary value problem

div F = Q,

F = —-Kgrad p, (2.1)

in a bounded polygonal domain Q € R? with the homogeneous Dirichlet boundary conditions,
i.e. p=0 on 0f). Here p denotes a scalar function that we refer to as the pressure, F denotes
a vector function that we refer to as the flux, K denotes a diffusion tensor, and ) denotes a
source function.

Let Q5 be a non-overlapping conformal partition of {2 onto polygonal elements e;,

Qh = G €;. (22)
i=1



The elements e; are general simply-connected polygons with non-zero angles and edges. There-
fore, the number of polygon edges equals to the number of polygon vertices. The conformal
partition implies that (a) if e; Ne; consists of exactly one point, then it is a common vertex of
e; and e; and (b) if for ¢ # j, e; Ne; consists of more than one point, then e; Ne; is a common
edge of e; and e;.

The class of such partitions is very wide and includes meshes used in many applications.
For instance, adaptive meshes with hanging nodes (AMR meshes) are among them. A hanging
node occurs when two (or more) cells share an edge with one cell. If we consider the hanging
node as an additional vertex of that cell, we shall get a polygonal partition (2.2). Another
example comes from applications using nonmatching grids. The nonmatching grid occurs
when two different meshes are used in two adjacent subdomains. If we consider all the mesh
points on the interface between the subdomains as vertices of a conformal grid, we get again
a polygonal partition (2.2).

The purpose of this paper is to extend the support-operator (SO) method from [13] to
generate new discretizations of (2.1) on general polygonal meshes. The SO method is partic-
ularly amenable to polygonal meshes, because the discretization process occurs in two steps.
On the first step we consider each element of partition 2 as an independent domain and
generate an independent discretization for each element. On the second step we obtain the
global discretization by imposing continuity of the pressure and the normal component of the
flux across element interfaces.

The general scheme of the SO method is as follows. We begin by introducing the vector
spaces of discrete functions and scalar products on them. Then, we derive a discrete approxi-
mation for the divergence operator which we call the prime operator. The approximation to
the gradient operator refereed to as the derived operator will follow naturally from a discrete
analog of the Gauss-Green formula.

We assume that media in each mesh element is homogeneous, but material properties
(diffusion tensor) may vary between elements. The scalars are defined at both element centers,
p?, and edge centers, p}, p?, ...,p;*, where s; is the number of edges of element e; (see Fig. 1).
The vectors are defined in terms of edge-normal components, il, z?, ..., f*, located at the
midpoints of element edges. For instance, fi1 denotes the dot product of F with the outward
unit normal n}, i.e. f! =F-n].

P!

Figure 1: Location of pressure and flux unknowns for a degenerated pentagon.




Let e; be a convex polygon. Then, the full flux can be recovered at each corner of this cell
from two orthogonal projections on edges that share that corner. We denote the recovered
vectors by F}, F?, ..., FJ*, and assume that Ff is recovered from fik and fikﬂ. The recovered
vectors play important role in the SO methodology (see, e.g. (3.1)). Let nf = (njz, niy)T be
the normal vector corresponding to unknown fik. Then,

-1
2 fzk_'_l
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The case of a generated polygon is considered in the next section.

The quantities defined above are uniquely associated with a single element. The next
step is to use them to derive approximations to the divergence and the gradient operators
over the i-element. The discrete divergence operator, DIV , follows naturally from the Gauss
divergence theorem as

def 1 > k ok
DIVF), & = S fheh 2.
( ) 7 ‘rz k f’L 1 ( 3)

where V; denotes the area of the i-th cell and Ef denotes the length of the edge associated with
fF. We emphasize one more time that s; is the number of polygon edges which may be bigger
than the number of straight line boundary pieces. This happens when some of the polygon
angles equal to 7.

The discrete gradient operator, GRAD, is derived from a discrete analog of the Gauss-
Green formula

/H-gradqu+/diqudV=/H-nqdl (2.4)
e; €; Oe;
where ¢ is an arbitrary scalar function, H is an arbitrary vector function, and n denotes the
outward unit normal to Je;. The discrete analog of (2.4) is obtained by applying quadrature

rules to all three integrals. Let G = —K grad q be a flux corresponding to the scalar function
q. Furthermore, let h; = (h},hZ,...,h;")T and g; = (9}, 92,...,9;")" be the vectors of edge-

normal components of fluxes H and G, respectively, over element e;. Then, the first integral
n (2.4) is discretized as follows:

/H-gradqu = —/H-KIGdV ~ —hI M; g (2.5)

where M; € 1% x R is a symmetric positive definite matrix representing a quadrature rule.
A few methods for deriving accurate quadrature rules will be discussed in the next section.

The second integral in (2.4) is discretized using the definition of the discrete divergence
operator and the center point quadrature rule:

/lequV (DIVH),, ¢’ V; = ¢} Z R 6% = ¢ (A Liw;) (2.6)
. k=1
where L; denotes the diagonal matrix with entries £}, ¢2,...,4", and u; = (1,1,...,1)T.

Finally, the boundary integral in (2.4) is discretized with the central point quadrature rule:

/H ngdl ~ Zh’“ keb =T L g (2.7)

Oe;



where ¢q; = (qil, qi2, A )T denotes a vector of edge-based scalar unknowns.
Substituting the right hand sides from (2.5), (2.6), (2.7) into the Gauss-Green formula
(2.4), we get its discrete analog:

hi (—Migi + qf (Liu;) — Ligi) = 0. (2.8)

Components of vector g; represent the discrete gradient operator GRAD. Note that for the
general diffusion tensor, GRAD approximates the continuous operator —K grad. Since flux
h; is an arbitrary vector, formula (2.8) implies that

(GRAD q)e, = M; ' L; (g; — q{w;). (2.9)

The discrete gradient and divergence operators applied to the continuous problem (2.1)
result in a local discretization

(DIVF).,, = Qi

fi = (GRADp), (210)

where (Q; denotes the mean value of the source function in the i-th element. The discretization
(2.10) is called mimetic because the discrete operators DIV and GRAD mimic the essential
property of continuous operators div and —Kgrad; namely, the Gauss-Green formula. We
refer to [12] for a detailed analysis of mimetic discretizations.

The global discretization is achieved by imposing continuity conditions for primary vari-
ables F and p across element interfaces. In the case of continuous problem, the continuity
conditions mean that the sum over all cells of (2.4) results in a similar integral identity over
the entire domain due to the cancellation of the interior boundary integrals. In the discrete
case, the cancellation of the interior boundary contributions happens if

Fpf e+ fiphdh =0 (2.11)

where Ef = Eé- denotes the length of a common edge of elements e; and e;. Note that in the
case of a complex interface consisting of a few edges, the assumptions (2.11) are sufficient
but not necessary. If we enforce continuity of normal component of fluxes, we end up with a
continuity conditions of scalars, and wvice verse. Thus, the continuity conditions are

ff=-ff and pf=ph (2.12)

Remark 2.1 [t is pertinent to note some advantages of the continuity conditions (2.12) in
the case of triangular or quadrilateral AMR meshes. In a particular case when element e;
shares one of its edges with exactly two elements e; and ey, the interfaces conditions proposed
in [7] enforce the three corresponding fluxes be equal each other. Such continuity condition
results in poorer resolution of interface fluzes than (2.12). Moreover, its generalization to
AMR meshes with higher level of refinement (three and more) becomes quites complicated. On
contrast, the continuity condition (2.12) remains the same for any level of mesh refinement.

The system of equations (2.10), (2.12) is closed by imposing boundary conditions. For
our model problem, the homogeneous Dirichlet boundary conditions imply that the scalar
unknowns associated with boundary edges equal to zero.



3 Scalar products in space of fluxes

In this section, we describe a method for deriving a family of scalar products in space of fluxes
(quadrature rules) which are exact for uniform flows. The method is based on a quadrature
rule for a triangular element proposed and analyzed in [8]. The quadrature rule for a general
polygonal element e; will be given in a form of a symmetric positive definite matrix M; € R > 5
where s; is the number of edges of e;.

Let A be a triangle with vertices ry, ro and r3. Let f* and ¢*, be the normal components of
fluxes F and H, respectively, defined at mid points of edges opposite to vertices ry, k = 1,2, 3.
Furthermore, let H* and G* be the fluxes recovered at vertices ry, k = 1,2, 3. Then the matrix
My inducing the accurate scalar product of vectors ha = (h!, h?,h%)T and ga = (g%, ¢%,9%)7

is defined by
3

hE Maga = %' > H* - K,'G (3.1)
k=1
where |A| denotes the area of the triangle and K denotes the value of the diffusion tensor
at the mass center of A.
In the special case K = I formulas for entries of the matrix Ma are quite simple. Let 6y,
be the triangle angle at vertex ri. Then,

0149 n 0143 {145 cos O3 {143 cos -
sinf3 = sinfy sin 03 sin 0
1 £2£1 COS 93 £2£1 ngg £2£3 COS 01
Mp = = . 3.2
A7 6 sin 03 sin 03 + sin 64 sin 64 (3.2)
f3£1 COS 02 f3£2 COS 01 fgfl + f3£2
sin 69 sin 64 sin@y  sinfy |

In the case of an arbitrary polygon, the quadrature rules (3.1) suggests the following
strategy. We split the polygon into a few triangles, apply the above quadrature rule, and then
“eliminate” the unknowns associated with interior auxiliary edges. The main attributes of
the approach are its simplicity and the fact that it can be easily incorporated into existing
simulation codes. Moreover, it can be easy shown that thus obtained scalar product of fluxes
results in a numerical scheme which is exact for linear solutions.

Let us assume that a polygon e; is split into p triangles Ay, I = 1,...,p. Let ha, =
(hzl, hzl,h%)T, Il =1,...,p, be the vectors of edge-based normal component of fluxes, ga, =
(qll, qd, qd)T be the vectors of edge-based pressures, and q?l be the triangle-centered pressures.
It is obvious that local mimetic discretizations similar to (2.8) can be derived for each of the
triangles. The fact that the mimetic discretization on a triangular mesh is exact for linear
solutions means that the discrete Gauss-Green formulas

hgilMAilgA’tl (DIV H) 1lqllVAzl Z h zl qzl7 I=1,...,p, (3.3)

are identities when q?l are evaluated at the mass centers of A;, qikl and gfl are evaluated at
the mid-points of the associated triangle edges, and ha, is an arbitrary vector from R3. Here
VA, denotes the area of triangle A;;.

Recall that the original variables associated with the polygon e; are the normal components
of the boundary fluxes and the cell-centered pressure q?. In order to eliminate the other



variables, we make a simple assumption about divergence of vector fields over the polygon e;
which will allow us to combine formulas (3.3) in such a way to derive the discrete Gauss-Green
formula (2.8) for the polygon e;. We rewrite formula (2.8) using notations similar to that in
(3.3):

kY M; g; + (DIVH)., ¢0V. thzk . (3.4)

The matrix M; represents a quadrature rule over the polygon e; which gives us a numerical
scheme exact for linear solutions. Let hT (hz 1 hZQ) be a vector of the edge-based normal

components of fluxes where h;1 corresponds to boundary edges, i.e. izi,l = h;, and izi,g
corresponds to interior edges. Furthermore, let «y, [ = 1,...,p, be a priori given non-zero
numbers such that

(DIVH)A,, = a;(DIV H),. (3.5)

The numbers «;; represent relations between values of the discrete divergence over the polygon
and its parts. We assume that the same relations hold for the vector field G. If ¢; is a convex
regular-shaped polygon, it is physically reasonable to assume that the divergence over each
triangle equals to the divergence over the polygon, i.e. a; = 1. A particular example of a
non-convex polygon and a;; # 1 will be given later.

The standard assembling procedure applied to (3.3) gives

P si
hf Mg + (DIVH)e, Y aaVa,ah = ) i & of (3.6)
=1 k=1
where v
M; = ZM,IMA“-A[;S

s=1
and N;; are the assembling matrices. Note that the terms in the right hand sides of (3.3)
corresponding to interior edges cancel one another in (3.6) leaving only the boundary con-
tributors. Assumption (3.5) was used to derive the second term in the left hand side. A

comparison of this term with the second term in (3.4) gives us a relation between cell-centered
scalar unknowns induced by this assumption:

Z a,l Ba q?l (3.7)

It is pertinent to stress here that formula (3.7) may be used only for a theoretical analysis.
In numerical experiments we compute ¢? by solving the saddle point problem (2.10), (2.12).

The vectors hz,g and g; 2 are involved solely in the first term. They are associated with
interior edges and have to be eliminated in order to comply with the original discrete Gauss-
Green formula (2.8) (or with its equivalent representation (3.4)). Note that vectors h; 9 and
gi,2 are related to vectors iLi’l = h; and §;1 = ¢;, respectively, via equations (3.5). The
solvalibility of these equations is analyzed in the following lemma.

Lemma 3.1 Let the numbers a; be such that
P
> aiVa, =V, (3.8)
=1
Then system (3.5) has a solution for any vector h;.

7



Proof. Let r be the number of interior edges of polygon e;. The system (3.5) may be rewritten
as follows: )

By h;9 = By hy (3.9)
where By € RP*" and B; € RP*%. The system (3.9) is compartible if and only if the right

hand side, B h;, is orthogonal to ker B . Let us show that the dimension of ker B equals to
one. If ¢ € ker B € ®P then

(B3, ) =0, Vne®R (3.10)

Since each interior edge is shared by two triangles, each row of BJ has exactly two non-zero
entries. Let A;; and A; be two triangle having a common edge. Furthermore, let vector 7
has only one non-zero component corresponding to this edge. Then equation (3.10) results in

1 1

Since the polygon e; is simply connected, one component of vector i defines uniquely the
other components. Therefore dimension of ker B is at most 1. It is obvious that vector
¢ = {V1,...,V,} is a non-trivial solution of (3.11). Thus, dim(ker BY) = 1.

Now, we prove that ¢ | B1h;. Since the vector h; of normal components of boundary fluxes
is arbitrary, the orthogonality condition holds if and only if BY1 = 0. The definition of the
discrete divergence and system (3.5) imply that

3 Ek E'k u VA. (877
(BI)e =) —rauth — o bk = Lix <Z ‘}7[1 - 1) .

= Ves Vag =1 e

The equation (3.8) imply now that (Bf); = 0. Since the k is arbitrary, we get BT = 0
which proves the assertion of the lemma. O

Corollary 3.1 dim(ker By) =7 —p+ 1.

Let us consider a couple of typical examples illustrating Lemma 3.1 and Corollary 3.1. As
shown on Fig. 2, there exist a few ways to split a polygon e; into triangles either by introducing
additional interior points (one or more) or without such points.

Figure 2: Two ways for splitting a pentagon.

In the first case (left picture in Fig. 2) we have p—1 auxiliary interior edges and p equations
for the corresponding fluxes. Thus, dim(ker By) = (p — 1) — p+ 1 = 0 and system (3.5) has a

8



unique solution. In the second case (right picture in Fig. 2) we have p auxiliary interior edges
and p equations for the corresponding fluxes. Thus, dim(ker B2) =p—p+ 1 =1 and we get
one-parametric family of solutions for (3.5). In both cases, it is possible to resolve equations
(3.5) as

hip=Bh; and  Gio=DBg (3.12)
where B € R"*P is a rectangular matrix. Using these relations, we may rewrite the first term
in (3.4) as follows:

ST = M',n M',m
= 7] | |
z’ z7

9i,1
gi2

] = h,;FJMZ 9i (3.13)

where 5 3 5 5
M; = M; 11 + BT M; 29B + M; 12B + BT M; 2.

Let us prove that the discrete Green formula (3.4) with the mass matrix M; derived above
is exact for linear solutions. It is proved in [8] that formula (3.3) is exact for triangles and
linear solutions. Therefore formula (3.6) is exact for linear solutions if H satisfies (3.5) (resp.,
if h; satisfies (3.12)). Since the boundary fluxes h; are arbitrary in (3.12), formula (3.4) is
exact for linear solutions when q? is evaluated at the point

where c?l is the centroid of triangle A;. The above statement follows from the fact that
q3 = q(c?l) and ¢(x) is linear in x. In the special case when all ;; equal to one, ¢! is the mass
center of the polygon e;.

At the end of this section we shall consider a few special cases of polygons which may
cause some problems in the existing codes (see Fig. 3).

Figure 3: A few cases of bad polygons.

The left polygon in Fig 3 is a non-convex quadrilateral element e;. A proper splitting
shown on the figure converts it into two triangles. It is possible that the mass center of a
non-convex element lies outside the element. In this case a special choice of numbers «o;; and
probably another splitting of element e; may help to move a point where a linear solution has
to be evaluated from the mass center of the element to a point inside it.

The middle quadrilateral e; in Fig 3 has an edge whose length is relatively smaller than
length of the other edges. The splitting shown in figure results is a thin triangle. Let us

9



enumerate the edges of this quadrilateral counter-clockwise starting with the smallest edge.
Thus, E} be the length of the smallest edge and E? be the length of the auxiliary interior edge.
Furthermore, let A; denote the thin triangle and Ay be the other triangle. Assuming for
simplicity that a; = a2 =1 in (3.5), we get

Z & (Va, + Vay)

In the asymptotic case, £; — 0, the above formula gives the expected result:
P =ff +005).
Substituting this estimate into scalar product (3.1), (3.2), we get that
ha, Ma,ga, ~ £ hx,gn,-

Thus, the contribution of the thin triangle into the scalar product over the quadrilateral e; is
negligent.

The right quadrilateral e; in Fig. 3 has two edges which form an angle of 180 degrees. Like
in the case on the non-convex quadrilateral, a proper splitting shown on the picture resolves
the problem.

4 Solution method

In this section we shall show that system (2.10), (2.12) can be easily reduced to a system of
linear algebraic equations for edge-based pressure unknowns with a symmetric positive definite
matrix.

The continuity conditions (2.12) allow us to introduce a single scalar unknown for each
interior mesh edge. Let /;; be the length of common edge between elements e; and e;. We
denote the corresponding pressure unknown as p;; where ¢ < j. In a similar way, we denote
the flux from i-th element to j-th element as f;;. The new notations allow us to rewrite the
flux continuity conditions as

bijfij = —lijfji, 1 <7 (4.1)

Using the above notations, we rewrite system (2.10), (2.12) in a symmetric form. Let

C; = Ly, ie. C; = (£},02,...,£;)T. Then,

7?

M; f; + G — X lijpi; = 0,
k=1

—4ij fij — Lij fi = 0,
where 1 =1,...,m and i < j.

System (4.2) is a typical example of a saddle point problem. Since it is symmetric, it can be
solved by the Lanzcos iterative method. However, a few simple algebraic transformations will
reduce (4.2) to a problem with a symmetric positive definite matrix. Note that the primary

variables f; and pg, 1=1,...,N, are only connected within a single cell. Therefore, they may
be easy excluded from the system with O(m) arithmetical operations resulting in
Sp=2b (4.3)

where p denotes the global vector of edge-based scalar unknowns p;;, and b is a right-hand
side vector.

10



Lemma 4.1 The matriz S is symmetric and positive definite.

The proof of this lemma follows the proofs of similar results in the theory of hybrid-mixed
finite elements and is omitted here. In addition to the properties mentioned above, the matrix
S is sparse.

Problem (4.3) can be solved by the preconditioned conjugate gradient method. In the
numerical experiments we use the algebraic multigrid preconditioner from [14]. After solving
problem (4.3), we may recover the primary variables element-by-element using local systems
(4.2).

5 Numerical experiments

In this section we present computational results which demonstrate the accuracy of our
method, its flexibility and the efficiency of the solution method. The algebraic multigrid
was chosen as an example of a method applicable to arbitrary matrix stencils. However, its
theoretical justification is limited to M-matrices. In the case of highly disturbed meshes and
random isotropic diffusion tensors, its performance may degrade. In order to ensure the ro-
bustness of the solver, the algebraic multigrid may be replaced by (or combined with) more
robust multigrid methods such as aggregation multigrid methods [15] and algebraic multigrid
methods with projectors [5].

5.1 Uniform flows

The first set of experiments verifies that our method is exact for linear functions. We consider
the diffusion problem (2.1) in the unit square (0, 1)? subject to the non-homogeneous boundary
conditions. Let K =1 and p(z, y) = = + y be the exact solution.

We split each polygon into triangles by inserting one interior point and connecting it with
the polygon vertices. We consider the case when all a;; = 1. This splitting means that the
matrix B from (3.12) is not unique. However, if we specify a particular formula for computing
one of the interior edge-based fluxes, the other fluxes will be calculated recursively using
equations (3.5). For a given polygon e;, we define one of the minimal angles and recover flux
Ff at the corresponding vertex. Then the required formula defines the orthogonal projection
of the recovered flux F¥ onto a unit vector normal to the interior edge corresponding to the
chosen angle.

The result of numerical experiment are shown in the left picture in Fig. 4. As it was proved
in Section 3, the computed solution is exact at both the edge mid points and the polygon mass
centers.

5.2 Median meshes

The second set of calculations addresses the accuracy of the method on highly distorted
adaptive meshes in the Cartesian coordinate system. We again consider the diffusion problem
(2.1) in the unit square subject to the Dirichlet boundary conditions. Let K = I and

(x —0.5)2 + (y — 0.5)2)

=1—tanh
p(w’ y) tan ( 001

11



Figure 4: The isolines of discrete linear solutions for two scalar products.

Table 1: Convergence on a sequence of AMR meshes.

[ m || AMR/polygonal grids | AMR/hanging nodes
Ep €r Ep €r

0 256 5.34e-2 8.26e-2 7.11e-2  9.25e-2

1 556 1.01e-2 3.28e-2 1.47e-2  3.25e-2

2 988 2.71e-3 1.16e-2 3.96e-3  1.55e-2

3 3952 6.92e-4 5.56e-3 9.60e-4  7.89e-3

4 15808 1.73e-4 2.84e-3 2.45e-4  3.69e-3

be the exact solution. This function has a sharp peak in the middle of the domain and close
to zero near the domain boundary. Calculations were performed on a sequence of randomly
distorted locally refined grids build in two steps.

The sequence of grids begin with a 16 x 16 grid. We use a simple geometric approach to
create a few first locally refined meshes. Each mesh cell of the initial grid is uniquely identified
by two indices ip and jp, 1 < ig,jo < 16. On the first refinement level (I = 1), we split mesh
cells with indices 4 < 49, jo < 13 into four cells. The new mesh cells are uniquely identified by
two indices i1 and j1, 1 < 41,71 < 20. On the second refinement level, we split mesh cells with
indices 5 < 41,71 < 16 into four cells. On the subsequent levels (I > 2) we uniformly refine all
mesh cells.

The random grid is generated by moving each mesh point to a random position inside a
square centered at the point. The sides of the square are aligned with the coordinate axis
and equal 80% of the size of the smallest cell sharing the point. Note that the hanging mesh
points are always located in the middle of the associated edges. The relative Lo errors €, and
ey for cell-centered scalars and edge-based fluxes, respectively, are given in Table 1. The new
scalar product results in more accurate solution than the discretization technique proposed in
[7]. This is probably due to the fact the new discretization scheme uses two fluxes on the edge
with hanging node while the scheme described in [7] uses only one flux. The computational
grid and isolines of the computed solution are shown in Fig. 5.
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Figure 5: The computational grid on level [ = 2 and isolines of the discrete solution.

5.3 AMR meshes

In the third set of experiments we compare the new scalar product in the space of fluxes
with that analyzed in [1, 7]. The previously used scalar product extends the idea of (3.1) to
arbitrary quadrilaterals. This idea can be further extended to a convex polygon e;:

‘/; S4 - 5 85 .
hi M{*g; = o > VaFFKiGE, V=) Va, (5.1)
v k=1 k=1

where Ay denotes a triangle uniquely defined by two edges ending at the k-th vertex of e;
and VAk denotes the area of this triangle. Note that if e; is a triangle, then V; = VA, and we
recover formula (3.1). Unfortunately, scalar product (5.1) results in numerical schemes which
are not exact for linear solutions (see right picture in Fig. 4).

In order to compare two scalar product we consider diffusion problem (2.1) on the unit
square subject to the Dirichlet boundary conditions. Let K = I and p(z, y) = sin(27z) sin(27y)
be the exact solution. The result of numerical experiments are shown on Table 2. The errors
are computed on a sequence of polygonal median meshes. The set of points x;; = (x5, ys5) for
generating first the Voronoi tesselation and then the median mesh is given by

zij = & + 0.1 sin(27¢;) sin(27n;), 1=0,...,ng,
yij = n; + 0.1 sin(27&;) sin(27n;), J=0,...,ny,
where & = i/n; and n; = j/n,.
Both quadratures result in the second order convergence rate for the pressure unknown.

However, the new quadrature gives better resolution of both the pressure and the flux. The
computational grid and isolines of the computed solution are shown in Fig. 6.

5.4 Non-matching meshes

In the forth set of experiments we consider non-matching quadrilateral grids and perform
numerical analysis of the convergence rates. We consider the elliptic problem (2.1) in the unit
square with mixed boundary conditions. On the bottom and top boundary parts, we impose
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Table 2: Convergence analysis for two scalar products.

m || New scalar product || Old scalar product
€p Ef €p Ef
166 || 1.07e-1 | 3.68e-1 1.81e-1 | 4.57e-1
598 || 2.60e-2 | 1.64e-1 3.39e-2 | 2.52e-1
2230 || 5.11e-3 | 8.28e-2 6.64e-3 | 1.72e-1
8566 || 1.05e-3 | 4.29e-2 1.51e-3 | 1.20e-1
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0.9 0.9
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0.7 07} -
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Figure 6: The computational grids and isolines of the discrete solutions on the finer grid.

the Dirichlet boundary condition. The homogeneous Neumann boundary condition is set on
the rest of the boundary. Let the diffusion coefficient equals to K in the region defined by
y < 0.5 and equals to K5 in the rest of the domain. The source term Q(z,y) is chosen in such
a way that the exact solution is given by

p(m, y) — 16 12K1 3K1 ’
y— y > 0.5.

y < 0.5,

The computational mesh and the discrete solution for Ko = 4 and K; = 1 are shown in
Fig. 7. The random grids below and above interface line y = 0.5 were generated using the
rules described above. The isolines of the discrete solution are straight lines except the isoline
located below the mesh interface where the computational grid is quite coarse. The relative
Ly errors €, and e presented in Table 3 show the second order convergence rates for the
pressure and only the first order for the flux. This confirms the convergence rates observed in
the previous experiments.

We measure the aspect ratio, denoted by p;, of polygon e; as the ratio of the biggest
edge length to the smallest one. The middle column in Table 3 shows that the non-matching
quadrilateral grids may result in very bad interface polygons (see, e.g., the middle polygon in
Fig. 3). However, it did not make any noticeable impact on the convergence rate.

The last two columns in Table 3 demonstrate excellent performance of the AMG solver
in the case of smooth solutions. The stopping criterion for the preconditioned conjugate
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Table 3: Convergence analysis on non-matching grids.

m Ep Ef max; p; || #itr CPU, s
175 4.91e-3 1.39e-2 167.3 11 0.02
780 1.12e-4 6.35e-3 267.1 13 0.11

3286 2.70e-4 2.89e-3 159.5 12 0.61
13482 6.63e-5 1.45e-3 612.1 14 3.14
54610 1.64e-5 7.22e-4 2024. 14 13.2

1 maavs =
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Figure 7: The computational grid and isolines of the discrete solution.

gradient method was the relative decrease in the norm of the residual by factor 107'2. The
computational time, denoted by CPU, includes the arithmetical cost for initializing the AMG
solver and solving problem (4.3). The arithmetical cost per iteration grows almost linear in
the number of cells, m, except for the very coarse grids where cache memory effects play the
important role.

Let us keep the setting of the last experiment but replace the source term and boundary
conditions such that the exact solution is now p(z, y) = = — z*. The left picture in Fig. 8
represents the discrete solutions corresponding to the grid shown in Fig. 7. The breaking
of isolines which are supposed to be the straight lines is due to a coarse grid discretization.

Indeed, the solution isolines on the refined grid (right picture) are very close to straight lines.

6 Conclusion

The SO discretization has been shown to be second-order accurate for the pressure variable on
general polygonal, AMR and non-matching meshes. Existence of accurate SO discretizations
for tetrahedral meshes, enables us an extension of the methodology to general polyhedral
meshes. We shall address this issue in future publications.

Our methodology for deriving accurate SO discretizations on polygonal meshes can be
repeated for other PDEs including equations of linear elasticity and gas dynamics.
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